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In  two recent papers Itoh has developed a finite amplitude stability theory which 
indicates that nonlinearity increases the damping rate of a small but finite amplitude 
disturbance to flow in a circular pipe when the disturbance is concentrated near the 
axis of the pipe. For such a centre mode, which is the only mode considered by Itoh, 
Davey & Nguyen found, in an earlier paper, the opposite result that nonlinearity 
decreases the damping rate. We examine the reasons for this discrepancy and we 
explain the subtle difference between Itoh’s method and the method of Reynolds & 
Potter, which was used by Davey & Nguyen. 

We suggest that for the centre mode of pipe Aow neither Itoh’s result nor Davey & 
Nguyen’s result is a reliable guide to the true situation. However, for the wall mode of 
pipe flow, and especially for plane Couette flow, both methods give very similar results 
and we suggest that this similarity indicates that in these cases the damping rate is 
decreased by nonlinearity. For a particular problem we believe that it is only when the 
results of the two methods are very similar that either method is likely to be useful. 

1. Introduction 
It is well known that Poiseuille flow in a circular pipe is stable to infinitesimal 

disturbances, so that there is no neutral-stability curve for linearized theory. However, 
it is found experimentally that pipe flow usually becomes unstable when the Reynolds 
number based on the pipe radius exceeds a value of about 2000. It seems likely there- 
fore that pipe flow may become unstable if a disturbance of small but finite amplitude 
exists in the flow whose amplitude just exceeds some critical value which we shall call 
the equilibrium amplitude. A disturbance whose amplitude is just larger than this 
equilibrium value will grow whereas one whose amplitude is just smaller will decay; if 
such an equilibrium state exists i t  is said to be unstable. In  this paper we restrict 
attention to axisymmetric disturbances which, when they are infinitesimal and the 
Reynolds number is large, are concentrated either near the axis of the pipe, the centre 
modes, or near the wall of the pipe, the wall modes; see, for example, Gill (1965). 

In  an appendix to Davey & Nguyen (1971), Gill has given some simple physical 
arguments as to  how the equilibrium amplitudes, if they exist, vary with the Reynolds 
number R for both the centre modes and the wall modes. For both modes he finds that 
the amplitudes vary as inverse powers of R. An initial attempt, using a nonlinear 
stability theory, to determine whether such equilibrium amplitudes exist, and if so 
their values, was made by Davey & Nguyen (1 97 1) using the equilibrium amplitude 
method of false problems pioneered by Reynolds & Potter (1967). They found that 
equilibrium amplitudes do exist for both the least damped centre mode and for the 
least damped wall mode of linearized stability theory. Moreover the numerical values 
which they found depended upon R, for large values of R, exactly as predicted by Gill. 
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Recently Itoh (1977a,  b )  has used another nonlinear stability theory to investigate 
the same problem. He restricted his attention t o  the least damped centre mode and 
found, in contrast to Davey & N‘guyen (1 971), that an equilibrium amplitude did not 
exist. Whether such an equilibrium amplitude exists or not depends upon the sign of 
the imaginary part of the Landau constant. In  all nonlinear stability theories the value 
of the Landau constant is given by the ratio of two integrals. These integrals depend 
upon the fundamental solution of the Orr-Sommerfeld equation and the associated 
adjoint function, the first harmonic of the fundamental and the distortion of the mean 
motion. Itoh’s equations for these functions are exactly the same as those of Davey & 
Nguyen except for the harmonic equation, where one term is different. Nevertheless 
this single term makes a crucial difference to the value of the Landau constant for the 
centre mode, the reason for this being that the eigenvalues of the axisymmetric form of 
the Orr-Sommerfeld operator for the centre modes have a rather special distribution. 
This special distribution has been pointed out by Itoh (1 977 b )  and we shall discuss its 
consequences. 

In  $ 2  we explain the equilibrium amplitude method of Reynolds & Potter via a 
simple model problem which illustrates the key features of the method. We are also 
able to use the model problem to indicate how Itoh’s method differs from that of 
Reynolds & Potter. This enables us to pinpoint the weaknesses of both methods and 
to explain why both methods should give very similar values for the Landau constant. 
In  $ 3  we present typical numerical results, using both methods, for three cases: 
(i) the least damped centre mode of pipe flow, (ii) the least damped wall mode of pipe 
flow and (iii) the least damped mode of plane Couette Aow. In $ 4  we discuss the results 
for these three cases and the conclusions which may be inferred from them. 

2. The solution of a model problem by both methods 
We suppose that the fluid is incompressible and has kinematic viscosity v, that the 

pipe is infinitely long and of radius a, and that the externally applied mean pressure 
gradient is maintained a t  a constant value. The undisturbed flow is parabolic with 
speed U along the centre-line. We choose U and a as the characteristic speed and 
length with respect to which we make our quantities non-dimensional. Let 5 and r 
be the non-dimensional co-ordinates in the streamwise and radial directions respec- 
tively. We define a Reynolds number by 

R = Ua/v.  (1) 

We shall examine the stability of the flow to axially symmetric disturbances only, so 
that quantities will be invariant with respect to the azimuthal angle. This enables us to 
represent the velocity components via a stream function q5 and we may eliminate the 
pressure by taking the curl of the Navier-Stokes equations. 

We seek a marginally stable disturbance of small but finite amplitude A and 
frequency w which is periodic in the distance x downstream with wavenumber cc. 
Hence we define a phase function 

and seek a solution for d of the form 

6 = a x - w t  (2) 

(3) q5 = Q&) + q51(r) exp (W + $1(4 exp ( - ie) + qh(r) exp (2i6) + . . ., 
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where a tilde denotes the complex conjugate. The governing differential equation for 
$ for the pipe-flow problem is rather complicated and in order to explain the method 
of Reynolds &Potter (hereinafter whenever werefer to the method of Reynolds &Potter 
we shall mean their equilibrium amplitude method, see 5 4 of their paper) it is sufficient 
here to  consider the model problem whose governing differential equation is 

The linear operator on the left-hand side of (4) is just as for the pipe-flow problem but 
the simple term $2 on the right-hand side replaces the complicated nonlinear term. 

In  order to solve (4) we substitute the expansion (3) for $ into (4) and equate to zero 
the coefficient of each Fourier component. We shall need only the equations for $o, $1 

and $2 and these are 

(Ll+WM,)$, = 2$0$1+2$2~,+h.o.t., ( 5 )  

where 

and 

(L2+ 2wM2) $2 = 4; + h.o.t., 

Lo$o = 2$,W+h.o.t., 

In  (5)-(7), h.0.t. refers to higher-order terms which, as we shall explain presently, will 
not be needed. 

In  order to  solve (5)-(7) we recall that the real amplitude A of the disturbance is 
supposed to be small and so we can expand $o, $1, q52, . . . as power series in A .  Since $1 

is of order A it  follows from (6) that $2 will be of order A 2  and from (7)  that $o also 
will be of order A2. Moreover the nth harmonic will be of order An. We also need to 
expand w as a power series in A and, with some hindsight, we seek a solution of the form 

$1 = 4 1 1  +A3& +()(A5), 
$2 = A2$,2 + O(A4), 

$0 = A2$,2 + O(A4),  

(8 b )  

(8c)  

(8 4 = wo + ~ 2 ~ ,  + o ( ~ 4 ) .  

The boundary conditions will be such as to imply that the solution of (4), and of 
(5)-(7), poses a nonlinear eigenvalue problem for w as a function of A .  For an arbitrary 
real value of A ,  w will then in general be complex, but since we are seeking a solution 
which is marginally stable we need to  determine the smallest value of A for which the 
imaginary part of w is zero. Note that when A has been chosen such that w is real then, 
provided that it converges, Reynolds & Potter's method yields an equilibrium state 
fcr every harmonic. 

So we substitute (8) in (5)-(7) and equate coefficients of like powers of A. From the 
terms of order A in ( 5 )  we obtain the Orr-Sommerfeld equation 

(4 + W O M J  $11 = 0. (9) 
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The solution of this equation yields the eigenfunction 9511 and the complex eigenvalue 
wo of linear stability theory. The imaginary part woi of wo will be negative because there 
is no neutral-stability curve, so that infinitesimal disturbances are damped. From the 
terms of order A2 in ( 6 )  we obtain what is usually called the harmonic equation, 

and from the terms of order A2 in (7) we obtain the equation for the distortion of the 
mean motion, 

Equations (10) and ( 1  1 )  are inhomogeneous two-point boundary-value problems 
determining q522 and do2 respectively after $11 has been found from (9). 

The key quantity which we wish to determine is the Landau constant w2 and we find 
this by writing down the terms of order A3 in (5). The resulting equation has a solution 
only if a certain compatibility condition is satisfied which is obtained by multiplying 
the equationby the function adjoint to &andintegratingoverthe rangeof integration. 
This condition gives the value of w2 as the ratio of two integrals. The important point 
is that the values of these integrals, and hence the value of w2, are determined solely 
by the details of (9)-( 11) .  

Because A is to  be chosen such that w is real it follows from (8 d )  that we must have 

A09502 = 21$1112* ( 1.1 ) 

o = woi + ~2~~~ + o ( A ~ ) ,  (12) 

and so if the term of order A4 in (12) is ignored then the amplitude of the disturbance 
is given by 

Thus, since woi is negative, it  is vital that w2i should be positive for an equilibrium 
amplitude A,  to exist. 

The above is a description of the method of Reynolds & Potter as applied to problems 
without a neutral-stability curve. Fortunately we can easily use the above description 
of the model problem to explain the essence of how Itoh’s method differs from the 
method of Reynolds & Potter. Itoh seeks a solution in the phase space of his amplitude 
functions along a line on which the rate of change with respect to time of the amplitude 
of the harmonic is zero. The analogy of this as regards the model problem discussed 
above, in which the amplitude of the harmonic is A exp ( 2 q t )  with A independent of 
time, is to set wi = 0 directly in (6) before (6) is solved by means of the amplitude 
expansions (8). The result of doing this is that the equation for the harmonic function 
q522, instead of being (lo),  becomes 

(L2 4- 2worM2) $22 = $?17  (14) 

the quantity 2w0 being changed to 2w0,. This is exactly the form of the harmonic 
equation used by Itoh and because (14) is different from (10) his method gives a 
different value for w2 as the integrals mentioned above are altered. 

We thus see that Reynolds & Potter’s method can be modified slightly to yield the 
equations which Itoh’s method uses to calculate up, simply by making use of (12), i.e. 
wi = 0, at an earlier stage in the perturbation solution instead of just at  the last step. 
Note that one could reason along similar lines that one might as well put wi = 0 in (5) 
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also before this equation is solved via the amplitude expansion (8), but if one does this 
then at  order A ,  instead of the Orr-Sommerfeld equation (9), one obtains 

(4 + w o r w  $11 = 0, (15) 

and since wOr is real this equation has only the trivial solution $11 = 0 ! 
The model problem mentioned above and the two methods of solution are remini- 

scent of a similar difficulty which arises in studies of strong-weak interactions in 
quantum field theory. Such problems require the solution of a nonlinear equation 

L$ = N$., (16) 

where L is a linear operator and N is a nonlinear operator. A common method to solve 
(16) is to use perturbation theory to solve instead 

( H + € L ) ~  = €(H+N)@, (17) 
where Hi s  another, suitably chosen linear operator, and hence obtain a series solution 
for $. The required 3 is then found by setting E = 1. Here also the difficulty is that 
different answers can be obtained, when the series is truncated after a prescribed 
number of terms, if use is made of F = 1 somewhere before the last step. 

Since Itoh’s harmonic equation can be obtained from Reynolds & Potter’s method 
by making use of the condition wi = 0 before the last step, it  follows that the difference 
between the values of the first Landau constant w2 given by the two methods is 
essentially due to a rearrangement of the terms in an infinite power series which is 
perhaps being used close to  its radius of convergence. Both Reynolds & Potter’s method 
and Itoh’s met.hod set d(mean-motion distortion)/dt = 0 and hence they both include 
higher-order amplitude terms a t  a lower order and this is equivalent to another series 
rearrangement. The above identity has to be imposed by any Landau-type method 
when there is no neutral-stability curve as otherwise a compatibility condition cannot 
be obtained and so the Landau constants cannot be clearly defined. 

Since the difference between the two metohods amounts to a rearrangement of the 
terms of an infinite series, the crucial point is whether or not the two series are being 
used inside their respective radii of convergence. Only when we are well inside the radii 
of convergence of both series will the two-term truncation results obtained by the two 
methods be very similar. If the results are very different then at  least one series is 
probably being used outside its radius of convergence. We suggest that if only two 
terms are used then it is difficult to  see which method is preferable when they do not 
agree. The only way to resolve this question would be to take the calculations to  higher 
order, then recast the series to extend the radii of convergence. We predict that both 
methods would give identical results if this could be accomplished. 

We feel therefore that only when Reynolds & Potter’s method and Itoh’s method 
give very similar results for the Landau constant w2 is either result likely to be a reliable 
guide to the true situation. With this last thought in mind we present in $ 3  numerical 
results for three cases, obtained by using both forms of the equation for the harmonic. 

3. Numerical results for pipe flow and for plane Couette flow 
As we mentioned in $2, the calculation of the Landau constant w2 is quite straight- 

forward: the only decision which needs to be taken is whether to include or omit the 
term involving 2w,, from the harmonic equation. In order to see how the Landau 
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h wz 
0 - 2.4 + 23.23 
0.1 -6.9+ 0.5i 
0.2 + 3.6 - 15.9i 
0.3 + 15.9 - 21.43 
0.4 + 24.9- 21.63 
0.5 + 30.9 - 20.2i 

h wz 
0.6 + 34.9 - 18.5i 
0.7 + 37.7- 16.8i 
0.8 + 39.6 - 15.4i 
0.9 + 41.1 - 14.2i 
1 +42.3- 13-li 

TABLE 1. The variation of w2 with A for the least damped centre mode of pipe flow when a =  6.2 
and R = 500. A = 0 corresponds to Reynolds & Potter’s method and h = 1 to Itoh’s method. 

constant varied between the two methods we did a series of calculations with the term 
involving 2wOi multiplied by 1 - h with h = 0 (0.1)1. Hence the case h = 0 corresponds 
to Reynolds & Potter’s method and the case h = 1 corresponds t o  Itoh’s method. 

Case ( i )  : the centre mode for pipe $ow 
Davey & Nguyen considered the temporal stability problem, so that their wavenumber 
a uas  real, and they found that when R was large (see figure 6 of their paper) the 
most dangerous wavenumber, from the point of view of its being the one most likely 
to  lead to  transition, was approximately 0.77Rf for the least damped centre mode. 
In  accordance with this result we did calculations for the temporal stability problem 
with a: = 6.2 and R = 500, for which values 

wo = 5.8850 - 0.39183. (18) 

We also did calculations for other values o f a  and R but the results which we present in 
table 1 are typical of those which we obtained for the other values. 

Since the rows of table 1 corresponding t o  h = 0 and h = 1 are, apart from a scale 
factor, the same as the numerical values quoted by Itoh (19773, p. 477) ,  we are in 
complete agreement with his numerical work. Note that the results for h = 0 and h = 1 
are very different, even to  the extent that the imaginary part of w2 changes sign. This 
sign change means [see (1 3 ) ]  that  Davey & Nguyen obtained an equilibrium amplitude 
whereas Itoh claimed thatd the nonlinearity has a stabilizing effect. This dichotomy has 
been well discussed by Itoh (1 977 b, p. 477),  who correctly pointed out that  the eigen- 
values of the centre-mode problem have a rather special distribution in that 2w0 is very 
close to  an eigenvalue of the left-hand-side harmonic operator L2 + 2w0 M,, i.e. of the 
Orr-Sommerfeld operator with a replaced by 2a. The solution of the harmonic 
equation with the 2wOi term multiplied by 1 - h is therefore very sensitive t o  changes in 
h as table 1 indicates. 

Case ( i i )  : the wall mode for pipe flow 

For the least damped wall mode Davey & Nguyen found that when R was large the 
wavenumber of the most dangerous disturbance was approximately 0.145Rg (see 
figure 7 of their paper). I n  accordance with this result we did calculations for this case 
with a = 5.8 and R = 1600, for which values 

w0 = 1.5847 - 0.539%. (19 )  

Again we did calculations for many other values of a and R but the results which we 
present in table 2 are typical of all the other calculations. 
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A 10-3 w2 

0 538 + 406i 
0.1 632 + 441i 
0.2 726 + 460; 
0.3 813 + 464i 
0.4 890 + 4553 
0.5 953 + 4383 

h 10-3 w2 

0.6 1004 + 416i 
0.7 1043 + 393i 
0.8 1073 + 371i 
0 .9  1096+ 351i 
1 11 14 + 333i 

TABLE 2. The variation of w2 with h for the least damped wall mode of pipe flow when a = 5.8 and 
R = 1600. h = 0 corresponds to Reynolds & Potter’s method and h = 1 to Itoh’s method. 

In  contrast to  the centre-mode case we see that for the wall mode at  least the 
imaginary part of w2 is relatively unchanged whichever harmonic equation is used, as 
can be seen from the rows of table 2 corresponding to h = 0 and h = 1. In  particular, 
note that wSi is positive for both h = 0 and h = 1 ,  so that ( 1 3 )  yields an equilibrium 
amplitude for Reynolds & Potter’s method, while Itoh’s method claims that the 
nonlinearity has a destabilizing effect. The real part of w2 does vary rather more 
between h = 0 and h = 1 but this is not too important as the physical significance of 
the real part of w, is just the extent to  which nonlinearity alters the phase speed of the 
disturbance. (The large numerical values for w2 are no cause for concern; this is due 
solely to the fact that we normalized the Orr-Sommerfeld eigenfunction by setting it 
equal to r2 + O(r4)  for r small; this is appropriate for the centre mode but not for the 
wall mode.) 

Case (iii) : plane Couette $ow 
Another flow which has no neutral-stability curve is plane Couette flow. For this flow, 
when R is large, the disturbance will be concentrated near one of the boundaries, and 
as Davey & Nguyen have explained, the stability problem is similar to the wall-mode 
problem for pipe flow. When R is large the wavenumber a of the most dangerous 
disturbance is approximately 0-19R4 (see figure 8 of their paper).? Again we have done 
many calculations for various values of a and R but those which we present in table 3 
for a = 4.6 and R = 625, when 

wo = 7.3127 - 0*7109i, (20) 

are typical of all the results which we obtained. 
For this case the imaginary part of w2 is almost the same for h = 0 as for h = 1 .  

Moreover for both values of h it is negative, so that, from (13 ) ,  Reynolds & Potter’s 
method yields an equilibrium amplitude and Itoh’s method claims that thenonlinearity 
has a destabilizing effect. There is again, as for the wall mode of pipe flow, more 
variation in the real part of w2. The result ( 2 0 )  is for a disturbance which is concentrated 
near the boundary which moves with non-dimensional speed 2 and the phase speed of 
linear stability theory is 1.59. Owing to nonlinear effects the phase speed at  the equi- 
librium amplitude becomes 1.48 when h = 0 and 1.28 when h = 1 .  Thus Itoh’s method 
produces a considerably larger change in the phase speed; this is also true for the 
previous case. 

t As in Davey & Nguyen we suppose that the bounding planes are a distance h apart and that 
one plane is stationary while the other moves with speed 2U. We define the Reynolds number by 
R = Uh/v  and the wavelength by 2nh/a. 
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A 0 2  A w2 

0 - 6.44 + 8.01.3 
0.1 - 7.1 1 + 8.89i 
0.2 - 8.77 + 9.44i 
0.3 - 10.31 + 9.66; 
0.4 - 11.65 + 9.62.3 
0.5 - 12.75 + 9.41i 

0.6 - 13.64+ 9-10.3 
0.7 - 14.31 + 8.75.3 
0.8 - 14.83 + 8.40; 
0.9 - 15.23 + 8.10i 

- 15.52 + 7.82; 1 

TABLE 3. The variation of w, with h for the least damped mode of plane Couette flow when u = 4.6 
and R = 625. h = 0 corresponds to Reynolds & Potter’s method and h = 1 to Itoh’s method. 

We should perhaps mention that in each of the three tables given above the values 
of w2 will be resealed by a positive real factor if the associated Orr-Sommerfeld eigen- 
function is renormalized. Since our main interest is to compare results €or h = 0 and 
h = 1 the particular normalization used is immaterial. We now discuss the implications 
of the above numerical results. 

4. Conclusions 
In  Reynolds & Potter’s method the amplitude ofthe nth harmonic is supposed to be 

proportional to Anexp (inwt). Then for a given real value of A ,  w = w(A) is determined 
by a nonlinear eigenvalue problem and the smallest value of A is sought for which the 
corresponding value of w is real, so that the amplitude of every harmonic will be in 
equilibrium. This search for a real value of w is made along the line d A / d t  = 0 in the 
phase space [A ,  w ] .  In  Itoh’s method, if an denotes the amplitude of his nth harmonic, 
a solution is sought in the phase space [a,] along the line dan/dt = 0, n + 1, and he 
should then have looked to see if his expansion parameter B could be chosen such that 
daJd t  can also be zero. Thus there is a close similarity between the two methods. 

Moreover we demonstrated in 0 2 that this similarity can be seen in a different way in 
that a slight adjustment of the method of Reynolds & Potter yields the key equations 
which Itoh used to determine his Landau constant. We also pointed out that this 
adjustment is equivalent to a rearrangement of terms in an infinite series which may be 
being used close to its radius of convergence. If both methods were used to calculate 
the second Landau constant, i.e. the coefficient w4 of A4 in (8  d), then the different 
evaluations of w4 would hopefully counterbalance the different evaluations of w2, so 
that one would hope that when three terms are used in the expansion of wi to  evaluate 
A: both methods will give closer answers than when only two terms are used.? 

We believe that when only the first Landau constant w2 is calculated then, because 
the difference in the values of w2 obtained by the two methods is essentially due to a 
rearrangement of the terms in an infinite series, only when these vaIues are very similar 
are they likely to be a reliable guide to the truth. In view of this belief and the numerical 
results presented in $ 3  we suggest, therefore, that neither method resolves the pipe- 
flow centre-mode problem, that the pipe-flow wall-mode problem is likely to have an 
equilibrium amplitude and that the problem of plane Couette flow almost certainly 

t An alternative approach (Herbert 1977) which may well be more rewarding is to solve 
numerically equations for the Fourier components such as (5)-(7), suitably truncated at  a fairly 
high order, directly without using an amplitude expansion such as (8). 
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has an equilibrium amplitude. The pipe-flow centre-mode problem is particularly 
difficult because the special distribution of the eigenvalues of the Orr-Sommerfeld 
operator for this case, as mentioned in $3,  restricts the radius of convergence of (8d)  
so severely that however many Landau constants are calculated neither method is 
likely to be of any use. 

For problems without a neutral-stability curve the principal weakness of both 
Reynolds & Potter’s method and Itoh’s method is that they attempt to solve a fully 
nonlinear problem by an expansion procedure in which the crosi -space dependence of 
the leading term is governed by the Orr-Sommerfeld operator, an operator associated 
with linear stability theory. The cross-space dependence of the exact solution of the 
nonlinear problem may not be close to that for the least damped eigenfunction of the 
Orr-Sommerfeld operator. 
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