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On Itoh’s finite amplitude stability theory for pipe flow
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In two recent papers Itoh has developed a finite amplitude stability theory which
indicates that nonlinearity increases the damping rate of a small but finite amplitude
disturbance to flow in a circular pipe when the disturbance is concentrated near the
axis of the pipe. For such a centre mode, which is the only mode considered by Itoh,
Davey & Nguyen found, in an earlier paper, the opposite result that nonlinearity
decreases the damping rate. We examine the reasons for this discrepancy and we
explain the subtle difference between Itoh’s method and the method of Reynolds &
Potter, which was used by Davey & Nguyen.

We suggest that for the centre mode of pipe flow neither Itoh’s result nor Davey &
Nguyen’s result is a reliable guide to the true situation. However, for the wall mode of
pipe flow, and especially for plane Couette flow, both methods give very similar results
and we suggest that this similarity indicates that in these cases the damping rate is
decreased by nonlinearity. For a particular problem we believe that it is only when the
results of the two methods are very similar that either method is likely to be useful.

1. Introduction

It is well known that Poiseuille flow in a circular pipe is stable to infinitesimal
disturbances, so that there is no neutral-stability curve for linearized theory. However,
it is found experimentally that pipe flow usually becomes unstable when the Reynolds
number based on the pipe radius exceeds a value of about 2000. It seems likely there-
fore that pipe flow may become unstable if a disturbance of small but finite amplitude
exists in the flow whose amplitude just exceeds some critical value which we shall call
the equilibrium amplitude. A disturbance whose amplitude is just larger than this
equilibrium value will grow whereas one whose amplitude is just smaller will decay; if
such an equilibrium state exists it is said to be unstable. In this paper we restrict
attention to axisymmetric disturbances which, when they are infinitesimal and the
Reynolds number is large, are concentrated either near the axis of the pipe, the centre
modes, or near the wall of the pipe, the wall modes; see, for example, Gill (1965).

In an appendix to Davey & Nguyen (1971), Gill has given some simple physical
arguments as to how the equilibrium amplitudes, if they exist, vary with the Reynolds
number R for both the centre modes and the wall modes. For both modes he finds that
the amplitudes vary as inverse powers of E. An initial attempt, using a nonlinear
stability theory, to determine whether such equilibrium amplitudes exist, and if so
their values, was made by Davey & Nguyen (1971) using the equilibrium amplitude
method of false problems pioneered by Reynolds & Potter (1967). They found that
equilibrium amplitudes do exist for both the least damped centre mode and for the
least damped wall mode of linearized stability theory. Moreover the numerical values
which they found depended upon R, for large values of E, exactly as predicted by Gill.
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Recently Itoh (1977a,b) has used another nonlinear stability theory to investigate
the same problem. He restricted his attention to the least damped centre mode and
found, in contrast to Davey & Nguyen (1971), that an equilibrium amplitude did not
exist. Whether such an equilibrium amplitude exists or not depends upon the sign of
the imaginary part of the Landau constant. In all nonlinear stability theories the value
of the Landau constant is given by the ratio of two integrals. These integrals depend
upon the fundamental solution of the Orr~Sommerfeld equation and the associated
adjoint function, the first harmonic of the fundamental and the distortion of the mean
motion. Itoh’s equations for these functions are exactly the same as those of Davey &
Nguyen except for the harmonic equation, where one term is different. Nevertheless
this single term makes a crucial difference to the value of the Landau constant for the
centre mode, the reason for this being that the eigenvalues of the axisymmetric form of
the Orr—Sommerfeld operator for the centre modes have a rather special distribution.
This special distribution has been pointed out by Itoh (19775) and we shall discuss its
consequences.

In §2 we explain the equilibrium amplitude method of Reynolds & Potter via a
simple model problem which illustrates the key features of the method. We are also
able to use the model problem to indicate how Itoh’s method differs from that of
Reynolds & Potter. This enables us to pinpoint the weaknesses of both methods and
to explain why both methods should give very similar values for the Landau constant.
In §3 we present typical numerical results, using both methods, for three cases:
(i) the least damped centre mode of pipe flow, (ii) the least damped wall mode of pipe
flow and (iii) the least damped mode of plane Couette flow. In §4 we discuss the results
for these three cases and the conelusions which may be inferred from them.

2. The solution of a model problem by both methods

We suppose that the fluid is incompressible and has kinematic viscosity v, that the
pipe is infinitely long and of radius a, and that the externally applied mean pressure
gradient is maintained at a constant value. The undisturbed flow is parabolic with
speed U along the centre-line. We choose U and a as the characteristic speed and
length with respect to which we make our quantities non-dimensional. Let  and r
be the non-dimensional co-ordinates in the streamwise and radial directions respec-

tively. We define a Reynolds number by
R="Ua/v. (1)

We shall examine the stability of the flow to axially symmetric disturbances only, so
that quantities will be invariant with respect to the azimuthal angle. This enables us to
represent the velocity components via a stream function ¢ and we may eliminate the
pressure by taking the curl of the Navier-Stokes equations.

We seek a marginally stable disturbance of small but finite amplitude 4 and
frequency @ which is periodic in the distance x downstream with wavenumber «.

Hence we define a phase function
0 =ar—wt (2)

and seek a solution for ¢ of the form

b = Polr) + ¢, (r) exp (i0) + ¢y (r) exp (—10) + Py(r) exp (2i0) + ..., (3)
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where a tilde denotes the complex conjugate. The governing differential equation for
¢ for the pipe-flow problem is rather complicated and in order to explain the method
of Reynolds & Potter (hereinafter whenever werefer to the method of Reynolds & Potter
we shall mean their equilibrium amplitude method, see § 4 of their paper) it is sufficient
here to consider the model problem whose governing differential equation is
2 2 2 12 2
[5‘%‘%%*5%*3{“*’2)%*5%}] [ﬁ‘:@*%]¢=¢2- )

The linear operator on the left-hand side of (4) is just as for the pipe-flow problem but
the simple term ¢? on the right-hand side replaces the complicated nonlinear term.

In order to solve (4) we substitute the expansion (3) for ¢ into (4) and equate to zero
the coefficient of each Fourier component. We shall need only the equations for ¢,, ¢,
and ¢, and these are

(Ly+0My) ¢y = 2001+ 2651 +hoot, (5)
(Ly+20M,) ¢ = $3+h.o.t., (6)
Ly¢o = 2¢, 4, +hoot., (7)
0 19 2 10
=L _19 e, —ey| | 2 p2,e
where L, = [87'2 el (R inaR(1—r )] [87‘2 e noc]
ot 190
=1 ——— e — 22
and M, =1 [81‘2 =% noc],

In (5)-(7), h.o.t. refers to higher-order terms which, as we shall explain presently, will
not be needed.

In order to solve (5)-(7) we recall that the real amplitude 4 of the disturbance is
supposed to be small and so we can expand ¢,, ¢,, @,, ... as power series in 4. Since ¢,
is of order A it follows from (6) that ¢, will be of order 4% and from (7) that ¢, also
will be of order 42. Moreover the nth harmonic will be of order 47, We also need to
expand w as a power series in 4 and, with some hindsight, we seek a solution of the form

¢ = Apy + 4343 +0(48), (8a)
Pg = A%Pyy + 0(4Y), (8b)
Po = Apge +0(44), (8¢)
w = wy+ A%w, + 0(A49). (8d)

The boundary conditions will be such as to imply that the solution of (4), and of
(5)—(7), poses a nonlinear eigenvalue problem for w as a function of 4. For an arbitrary
real value of 4, w will then in general be complex, but since we are seeking a solution
which is marginally stable we need to determine the smallest value of 4 for which the
imaginary part of w is zero. Note that when A4 has been chosen such that w is real then,
provided that it converges, Reynolds & Potter’s method yields an equilibrium state
for every harmonic.

So we substitute (8) in (5)~(7) and equate coefficients of like powers of A. From the
terms of order A in (5) we obtain the Orr—Sommerfeld equation

(Ly+wo M) ¢y, = 0. (9)
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The solution of this equation yields the eigenfunction ¢,; and the complex eigenvalue
w, of linear stability theory. The imaginary part w,; of w, will be negative because there
is no neutral-stability curve, so that infinitesimal disturbances are damped. From the
terms of order 42%in (6) we obtain what is usually called the harmonic equation,

(Ly+ 200 M) $op = 11, (10)
and from the terms of order A2 in (7) we obtain the equation for the distortion of the
mean motion, \

Lo$or = 2|¢11’ . (11)

Equations (10) and (11) are inhomogeneous two-point boundary-value problems
determining ¢,, and ¢, respectively after ¢, has been found from (9).

The key quantity which we wish to determine is the Landau constant w, and we find
this by writing down the terms of order 43 in (5). The resulting equation has a solution
only if a certain compatibility condition is satisfied which is obtained by multiplying
the equationbythefunction adjoint to ¢,, andintegrating overthe range of integration.
This condition gives the value of w, as the ratio of two integrals. The important point
is that the values of these integrals, and hence the value of w,, are determined solely
by the details of (9)-(11).

Because 4 is to be chosen such that w is real it follows from (8 d) that we must have

0 = wy; + A%y, + 0(49), (12)

and so if the term of order 44 in (12) is ignored then the amplitude of the disturbance
is given b
& Y A7 = — 0y /0y (13)

Thus, since w,, is negative, it is vital that w,; should be positive for an equilibrium
amplitude 4, to exist. ‘

The above is a description of the method of Reynolds & Potter as applied to problems
without a neutral-stability curve. Fortunately we can easily use the above description
of the model problem to explain the essence of how Itoh’s method differs from the
method of Reynolds & Potter. Itoh seeks a solution in the phase space of his amplitude
functions along a line on which the rate of change with respect to time of the amplitude
of the harmonic is zero. The analogy of this as regards the model problem discussed
above, in which the amplitude of the harmonic is 4 exp (2w,t) with 4 independent of
time, is to set w; = 0 directly in (6) before (6) is solved by means of the amplitude
expansions (8). The result of doing this is that the equation for the harmonic function
@q0, instead of being (10), becomes

(L + 204, My) Pgp = ¢34, (14)

the quantity 2w, being changed to 2w,,. This is exactly the form of the harmonic
equation used by Itoh and because (14) is different from (10) his method gives a
different value for v, as the integrals mentioned above are altered.

We thus see that Reynolds & Potter’s method can be modified slightly to yield the
equations which Itoh’s method uses to calculate w,, simply by making use of (12), i.e.
w; = 0, at an earlier stage in the perturbation solution instead of just at the last step.
Note that one could reason along similar lines that one might as well put w, = 0 in (5)
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also before this equation is solved via the amplitude expansion (8), but if one does this
then at order 4, instead of the Orr-Sommerfeld equation (9), one obtains

(Ly + 0o, M) ¢yy = O, (15)

and since w,, is real this equation has only the trivial solution ¢,, = 0!

The model problem mentioned above and the two methods of solution are remini-
scent of a gimilar difficulty which arises in studies of strong-weak interactions in
quantum field theory. Such problems require the solution of a nonlinear equation

Lyr = Ny, (16)
where L is a linear operator and N is a nonlinear operator. A common method to solve
(16) is to use perturbation theory to solve instead

(H+el)yr =e(H+ Ny, (17)

where H is another, suitably chosen linear operator, and hence obtain a series solution
for y. The required 3 is then found by setting e = 1. Here also the difficulty is that
different answers can be obtained, when the series is truncated after a prescribed
number of terms, if use is made of ¢ = 1 somewhere before the last step.

Since Itoh’s harmonic equation can be obtained from Reynolds & Potter’s method
by making use of the condition w, = 0 before the last step, it follows that the difference
between the values of the first Landau constant w, given by the two methods is
essentially due to a rearrangement of the terms in an infinite power series which is
perhaps being used close toitsradius of convergence. Both Reynolds & Potter’s method
and Itoh’s method set d(mean-motion distortion)/dt = 0 and hence they both include
higher-order amplitude terms at a lower order and this is equivalent to another series
rearrangement. The above identity has to be imposed by any Landau-type method
when there is no neutral-stability curve as otherwise a compatibility condition cannot
be obtained and so the Landau constants cannot be clearly defined.

Since the difference between the two methods amounts to a rearrangement of the
terms of an infinite series, the crucial point is whether or not the two series are being
used inside their respective radii of convergence. Only when we are well inside the radii
of convergence of both series will the two-term truncation results obtained by the two
methods be very similar. If the results are very different then at least one series is
probably being used outside its radius of convergence. We suggest that if only two
terms are used then it is difficult to see which method is preferable when they do not
agree. The only way to resolve this question would be to take the calculations to higher
order, then recast the series to extend the radii of convergence. We predict that both
methods would give identical results if this could be accomplished.

We feel therefore that only when Reynolds & Potter’s method and Itoh’s method
give very similar results for the Landau constant w, is either result likely to be a reliable
guide to the true situation. With this last thought in mind we present in § 3 numerical
results for three cases, obtained by using both forms of the equation for the harmonic.

3. Numerical results for pipe flow and for plane Couette flow

As we mentioned in § 2, the calculation of the Landau constant w, is quite straight-
forward: the only decision which needs to be taken is whether to include or omit the
term involving 2w, from the harmonic equation. In order to see how the Landau
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A Wy A W,

0 —2-4423-2¢ 06 +34-9—18-5¢
0-1 —6:94 0-5¢ 0-7 +37-7T—16-8¢
0-2 +36—159: 0-8 +39-6—-15-47
03 +159-21-4¢ 0-9 +41-1—14-2;5
0-4 +24-9—-21-67 i +42-3—-13-12
0-5 +30-9—20-24

TaBLE 1. The variation of w, with A for the least damped centre mode of pipe flow when & = 6-2
and B = 500. A = 0 corresponds to Reynolds & Potter’s method and A = 1 to Itoh’s method.

constant varied between the two methods we did a series of calculations with the term
involving 2w,, multiplied by 1 — A with A = 0(0-1)1. Hence the case A = 0 corresponds
to Reynolds & Potter’s method and the case A = 1 corresponds to Itoh’s method.

Case (i) : the centre mode for pipe flow

Davey & Nguyen considered the temporal stability problem, so that their wavenumber
« was real, and they found that when R was large (see figure 6 of their paper) the
most dangerous wavenumber, from the point of view of its being the one most likely
to lead to transition, was approximately 0-77R?* for the least damped centre mode.
In accordance with this result we did calculations for the temporal stability problem
with « = 6:2 and R = 500, for which values

w, = 58850 — 0-3918. (18)

We also did calculations for other values of @ and K but the results which we present in
table 1 are typical of those which we obtained for the other values.

Since the rows of table 1 corresponding to A = 0 and A = 1 are, apart from a scale
factor, the same as the numerical values quoted by Itoh (19778, p. 477), we are in
complete agreement with his numerical work. Note that the results for A = 0and A = 1
are very different, even to the extent that the imaginary part of w, changes sign. This
sign change means [see (13)] that Davey & Nguyen obtained an equilibrium amplitude
whereas Itoh claimed that the nonlinearity has a stabilizing effect. This dichotomy has
been well discussed by Itoh (19775, p. 477), who correctly pointed out that the eigen-
values of the centre-mode problem have a rather special distribution in that 2w, is very
close to an eigenvalue of the left-hand-side harmonic operator L, + 2w, M, i.e. of the
Orr-Sommerfeld operator with « replaced by 2«. The solution of the harmonic
equation with the 2w,; term multiplied by 1 — A is therefore very sensitive to changes in
A as table 1 indicates.

Case (13) : the wall mode for pipe flow
For the least damped wall mode Davey & Nguyen found that when R was large the
wavenumber of the most dangerous disturbance was approximately 0-145R?% (see
figure 7 of their paper). In accordance with this result we did calculations for this case
with & = 5:8 and R = 1600, for which values

wy = 1-5847 — 0-5395. (19)

Again we did calculations for many other values of « and R but the results which we
present in table 2 are typical of all the other calculations.
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A 10-3 w, A 1038 w,

0 538+ 4061 0-6 1004 + 4167
0-1 63244414 0-7 1043 + 393¢
0-2 726 + 4607 0-8 1073+ 3714
0-3 813 + 4641 0-9 1096 + 351¢
0-4 890 + 4557 1 1114 +333¢
0-5 953 +438¢

TasLE 2. The variation of w, with A for the least damped wall mode of pipe flow when & = 5-8 and
R = 1600. A = 0 corresponds to Reynolds & Potter’s method and A = 1 to Itoh’s method.

In contrast to the centre-mode case we see that for the wall mode at least the
imaginary part of w, is relatively unchanged whichever harmonic equation is used, as
can be seen from the rows of table 2 corresponding to A = 0 and A = 1. In particular,
note that w,, is positive for both A = 0 and A = 1, so that (13) yields an equilibrium
amplitude for Reynolds & Potter’s method, while Itoh’s method claims that the
nonlinearity has a destabilizing effect. The real part of w, does vary rather more
between A = 0 and A = 1 but this is not too important as the physical significance of
the real part of w, is just the extent to which nonlinearity alters the phase speed of the
disturbance. (The large numerical values for w, are no cause for concern; this is due
solely to the fact that we normalized the Orr-Sommerfeld eigenfunction by setting it
equal to r2+ O(r?) for r small; this is appropriate for the centre mode but not for the
wall mode.)

Case (191) : plane Couette flow

Another flow which has no neutral-stability curve is plane Couette flow. For this flow,
when R is large, the disturbance will be concentrated near one of the boundaries, and
as Davey & Nguyen have explained, the stability problem is similar to the wall-mode
problem for pipe flow. When R is large the wavenumber « of the most dangerous
disturbance is approximately 0-19R? (see figure 8 of their paper).t Again we have done
many calculations for various values of « and R but those which we present in table 3
for & = 4-6 and R = 625, when

Wy = T-3127—0-7109;, (20)

are typical of all the results which we obtained.

For this case the imaginary part of w, is almost the same for A = 0 as for A = 1.
Moreover for both values of A it is negative, so that, from (13), Reynolds & Potter’s
method yields an equilibrium amplitude and Itoh’s method claims that thenonlinearity
has a destabilizing effect. There is again, as for the wall mode of pipe flow, more
variation in the real part of w,. The result (20) is for a disturbance which is concentrated
near the boundary which moves with non-dimensional speed 2 and the phase speed of
linear stability theory is 1-59. Owing to nonlinear effects the phase speed at the equi-
librium amplitude becomes 1-48 when A = 0 and 1-28 when A = 1. Thus Itoh’s method
produces a considerably larger change in the phase speed; this is also true for the
previous case.

1 Asin Davey & Nguyen we suppose that the bounding planes are a distance h apart and that
one plane is stationary while the other moves with speed 2U. We define the Reynolds number by
R = Uh/v and the wavelength by 2nk/«.
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A W, A N

0 — 544+ 8-012 0:6 —13-64+9-10¢
0-1 —7-1148-89¢ 0-7 —14-31+8-75¢
0-2 —8-7749-44¢ 0-8 — 14-83 + 8-40¢
0-3 —10-31+9-662 0-9 — 1523+ 8:107
04 —11-654+9-62¢ 1 —15-52+7-82¢
0:5 —12.754+9-41¢

TaBLE 3. The variation of w, with A for the least damped mode of plane Couette low when o = 4-6
and B = 625. A = 0 corresponds to Reynolds & Potter’s method and A = 1 to Itoh’s method.

We should perhaps mention that in each of the three tables given above the values
of w, will be rescaled by a positive real factor if the associated Orr~Sommerfeld eigen-
function is renormalized. Since our main interest is to compare results for A = 0 and
A = 1 the particular normalization used is immaterial. We now discuss the implications
of the above numerical results.

4. Conclusions

In Reynolds & Potter’s method the amplitude of the nth harmonic is supposed to be
proportional to A™exp (inwt). Then for a given real value of 4, w = w(4)is determined
by a nonlinear eigenvalue problem and the smallest value of 4 is sought for which the
corresponding value of w is real, so that the amplitude of every harmonic will be in
equilibrium. This search for a real value of w is made along the line d4 /dt = 0 in the
phase space [4, w]. In Ttoh’s method, if a,, denotes the amplitude of his nth harmonic,
a solution is sought in the phase space [a,] along the line da,,/dt = 0, » & 1, and he
should then have looked to see if his expansion parameter e could be chosen such that
da, /dt can also be zero. Thus there is a close similarity between the two methods.

Moreover we demonstrated in § 2 that this similarity can be seen in a different way in
that a slight adjustment of the method of Reynolds & Potter yields the key equations
which Ttoh used to determine his Landau constant. We also pointed out that this
adjustment is equivalent to a rearrangement of terms in an infinite series which may be
being used close to its radius of convergence. If both methods were used to calculate
the second Landau constant, i.e. the coefficient w, of 44 in (8d), then the different
evaluations of w, would hopefully counterbalance the different evaluations of w,, so
that one would hope that when three terms are used in the expansion of w; to evaluate
AZ both methods will give closer answers than when only two terms are used.

We believe that when only the first Landau constant w, is calculated then, because
the difference in the values of w, obtained by the two methods is essentially due to a
rearrangement of the terms in an infinite series, only when these values are very similar
are they likely to be a reliable guide to the truth. In view of this belief and the numerical
results presented in § 3 we suggest, therefore, that neither method resolves the pipe-
flow centre-mode problem, that the pipe-flow wall-mode problem is likely to have an
equilibrium amplitude and that the problem of plane Couette flow almost certainly

1t An alternative approach (Herbert 1977) which may well be more rewarding is to solve
numerically equations for the Fourier components such as (5)—(7), suitably truncated at a fairly
high order, directly without using an amplitude expansion such as (8).
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has an equilibrium amplitude. The pipe-flow centre-mode problem is particularly
difficult because the special distribution of the eigenvalues of the Orr—-Sommerfeld
operator for this case, as mentioned in § 3, restricts the radius of convergence of (8d)
so severely that however many Landau constants are calculated neither method is
likely to be of any use.

For problems without a neutral-stability curve the principal weakness of both
Reynolds & Potter’s method and Itoh’s method is that they attempt to solve a fully
nonlinear problem by an expansion procedure in which the cros: -space dependence of
the leading term is governed by the Orr—Sommerfeld operator, an operator associated
with linear stability theory. The cross-space dependence of the exact solution of the
nonlinear problem may not be close to that for the least damped eigenfunction of the
Orr-Sommerfeld operator.
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